
9
Creating Flexible
Images
No matter how perfectly you build your liquid or elastic layout, it’s not

going to work if you don’t make the content within it fl exible too. Text is

easy—it wraps by default. Images are where it gets tricky. Luckily, as you

saw in Chapter 2, there are lots of creative ways to make your images—

content images as well as decorative graphic elements—fl exible to either

the viewport or the text size. In this chapter, you’ll learn the CSS behind

those fl exible image examples.

0321553845_text_press_pr1.indb 285 11/18/08 10:58:53 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES286

Dynamically Changing
Images’ Screen Area
Since the area available for an image to display within a fl exible layout
changes on the fl y, your images may need to as well. While fi xed-width
images can work within fl exible layouts—as long as they’re not too large, or
you have matching minimum widths in place—there are lots of ways you
can dynamically change the screen area that an image takes up.

Foreground Images that Scale with the Layout

One way to dynamically alter the footprint of an image is to make it liter-
ally scale. You saw an example of an image that scales with the text in
Figure 2.18, and an example of an image scaling with the changing dimen-
sions of its parent element in Figure 2.19. Both are elegant effects that are
deceptively simple to create.

Both liquid and elastic scaling images start out with a regular img element in
the (X)HTML:

Notice that this img element has no width or height attributes, as it normally
would. You control the dimensions with CSS instead.

For a liquid image, create a CSS rule to set the image’s width to a percentage
value:

img {

 width: 50%;

 }

No height value is necessary; the browser determines the height that will
proportionately constrain the image’s dimensions. If you were more con-
cerned about making the height of your image stay proportional to its par-
ent’s height than you were with width, you could use the height property
in the CSS and leave off the width property. Just make sure not to use the
two together.

As with all percentage dimensions, the percentage width value you choose is
relative to the width of the parent element. As you change the width of the
parent element, the image scales to match (Figure 9.1).

� NOTE: Each of the
completed example files
is available for down-
load from this book’s
companion web site at
www.flexiblewebbook.
com. Download the file
ch9_examples.zip to get
the complete set. I’ll let
you know which file
goes with which tech-
nique as we go along.

� NOTE: This rule will
make all images 50 percent
as wide as their parents.
In a real page, you would
probably add an id or
class to the specific image
you wanted to scale and
use that id or class as
the selector in the CSS.

0321553845_text_press_pr1.indb 286 11/18/08 10:58:58 AM

DYNAMICALLY CHANGING IMAGES’ SCREEN AREA 287

If you want the image to scale with the text size instead of the width of the
parent element, simply change the width value in the CSS to an em value:

img {

 width: 20em;

 }

As we discussed in Chapter 2, any time a browser scales an image, there’s
going to be some distortion, but you can keep it minimal by starting out
with a very large image so the browser will usually be scaling it down.

FIGURE 9.1 The image
is set to 50 percent of
the width of its parent,
the body element, so it
always takes up half the
width of the viewport.

FIGURE 9.2 The image
is set to 20 ems, so it will
always be roughly 40
text characters wide.

0321553845_text_press_pr1.indb 287 11/18/08 10:58:58 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES288

To assure that the browser always scales the image down, not up, you can set
a maximum width on the image that matches its set pixel width:

img {

 width: 20em;

 max-width: 500px;

 }

Now the image will scale only until it grows to 500 pixels wide; thereafter it
will act as any other fi xed-width image (Figure 9.3).

S IMULATE IMAGE SCALING WITH JAVASCRIPT

If you don’t want the browser to scale your images at all, yet you want them to
change in size based on the amount of space available, you can use JavaScript
to swap in differently sized versions of the same image. The JavaScript detects
the user’s viewport size and chooses the appropriate version of the image to
show. This works in the same way that resolution-dependent layouts (discussed
in Chapter 1) swap in different CSS fi les based on viewport size.

A live site that uses image-swapping to simulate scaling is Art & Logic (www.
artlogic.com). There are fi ve illustrations under the banner on the home page.
Try narrowing or widening your browser window; the images don’t scale in real
time in most browsers, but as soon as you stop moving the window, they jump
to a different size to match the available new space.

� TIP: If the image must
stay above a certain size to
remain “readable,” add a
pixel min-width value too.

� NOTE: The page
showing this completed
technique is scale.html in
the ch9_examples.zip file.

FIGURE 9.3 The image
does not stay proportional
to the text size once it
reaches its maximum
width of 500 pixels.

0321553845_text_press_pr1.indb 288 11/18/08 10:58:59 AM

DYNAMICALLY CHANGING IMAGES’ SCREEN AREA 289

Hiding and Revealing Portions of Images

Another way to change the amount of screen area an image takes up is to
dynamically change how much of the image is shown at any given time.
The image itself doesn’t change in size—the amount of space in which it’s
allowed to show does, and the rest of the image just remains hidden outside
of that space. I call this “variable cropping,” and you saw an example of it in
Figure 9.2.

You can create a variable cropping effect with either background or foreground
images. Both look the same, but each is specially suited to different situations.

VARIABLE CROPPING WITH BACKGROUND IMAGES

Putting the image that you want to dynamically crop in the background is
ideal when the image is purely decorative. This technique lets you keep the
image in the CSS with the other decorative images, so if you later change
the look of the site, all the decorative images can be changed in a single style
sheet instead of having to replace multiple img elements across multiple
pages of the site. By keeping the decorative image as a CSS background,
you’re also making it likely that the image won’t print when the user prints
the page—background printing is turned off by default in all major brows-
ers—so the user can save ink by printing only content.

To use a CSS background image, you’ll fi rst need an element on which to
place the background. This example will use a div:

<div id=”background”></div>

The div is completely empty; it contains no content, but exists simply to hold
a background image. If you have a more semantic element you can hang the
background on instead, use it. For instance, perhaps the image you want to
dynamically crop sits above an h3 element and matches it in width. You could
add the image as a background to the h3 element and give the h3 enough top
padding to make sure its text sits below the image, not on top of it.

Next, create a rule for this div that sets the image as its non-tiling
background:

div#background {

 background: url(styx.jpg) no-repeat;

 border: 2px solid #000;

}

I’ve added a border on to this div as well so you can easily see where its
edges lie. Right now, with no content within the div, it will collapse to zero
height. Add dimensions to the div to prop it open:

0321553845_text_press_pr1.indb 289 11/18/08 10:58:59 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES290

div#background {

 width: 50%;

 height: 330px;

 background: url(styx.jpg) no-repeat;

 border: 2px solid #000;

}

The width is set to some fl exible dimension—either a percentage, as I’ve
done here, or an em value to make it elastic—so that the div can change in
width to show more or less of the image. The height is set to the pixel height
of the image so that the entire height of the image will show at all times.

The div will now always be 50 percent as wide as the viewport; its back-
ground image doesn’t change in size, but gets cropped to a varying degree
from the right side (Figure 9.4).

However, this particular image would look better cropped from the left side, as
the cat’s face is on the right side of the photo. To specify from where the image
gets cropped, use the background-position property, or its shorthand in the
background property, to change the alignment of the image within the div:

div#background {

 width: 50%;

 height: 330px;

 background: url(styx.jpg) no-repeat right;

 border: 2px solid #000;

}

The image is now anchored to the right side of the div, so more or less of its
left side shows as the div changes in size (Figure 9.5).

� TIP: To dynamically
change the height of
the image as well as or
instead of the width,
use a flexible value for
the height property .

FIGURE 9.4 As the width
of the browser window
decreases, the black-bordered
div narrows and cuts off
more and more of the right
side of its background image.

0321553845_text_press_pr1.indb 290 11/18/08 10:58:59 AM

DYNAMICALLY CHANGING IMAGES’ SCREEN AREA 291

This is all the CSS necessary to get the basic variable cropping technique
working, but you can add a few other enhancements if you like. For instance,
right now, once the div exceeds the width of the image, empty white space
shows within the div. There are a few ways you could handle this. You could
add a background color to the div as well that would fi ll up whatever space
the image cannot; if you blend the edge of the image into this background
color, the effect can look seamless, as in Figures 2.16 and 2.17. Or, you could
add a maximum width to the div so it can never grow larger than the image.
You could also add minimum widths, as well as maximum and minimum
heights, to ensure that the div can never grow or shrink past particular
points in the image.

VARIABLE CROPPING WITH FOREGROUND IMAGES

If the image that you want to dynamically crop is functional content, you’ll
want to keep it as a foreground image by placing it in the (X)HTML using the
img element. You can ask yourself these questions to determine if the image
is content, not decoration:

Does the image convey information that I ought to put as text in an � alt
attribute?

Do I want to make sure the image always prints because without it the �
printout wouldn’t make sense or be complete?

Do I want to link the image? �

If the answer to any of these questions is yes, the image is content and
should be kept in the (X)HTML. CSS background images can’t achieve any of
these goals—at least not without some complicated workarounds and hacks,
all of which are quite silly, considering how easily a simple img element can
achieve all this.

FIGURE 9.5 With the
background anchored to the
right side of the div, more
of the left side of the image
is cut off when the browser
window is narrowed.

� NOTE: The page
showing this completed
technique is crop_
background.html in the
ch9_examples.zip file.

0321553845_text_press_pr1.indb 291 11/18/08 10:59:00 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES292

As with the background-image version of the variable cropping technique, you’ll
need some block element in the (X)HTML to hold the image. We’ll use a div
again; this time it won’t be empty, but will instead contain the img element:

<div id=”foreground”>

 <img src=”styx.jpg” alt=”my cat Styx” width=”500”

height=”330”>

</div>

Just as before, the div needs to have a fl exible width and a height set to the
pixel height of the image:

div#foreground {

 width: 50%;

 height: 330px;

 border: 2px solid #000;

}

So far, all we have is a regular div holding a regular image—there’s nothing
yet that makes this a variable cropping technique. If the image is bigger than
the div, it doesn’t get cropped, but simply overfl ows (Figure 9.6).

To get the cropping effect, add overflow: hidden; to the CSS rule:

div#foreground {

 overflow: hidden;

 width: 50%;

 height: 330px;

 border: 2px solid #000;

}

� NOTE: The img ele-
ment has an alt attri-
bute providing the text
equivalent of the image.
You can’t do this with a
CSS background image.

FIGURE 9.6 The image
inside the div hangs out
the right side of the div,
overlapping its black bor-
ders, when the div becomes
narrower than the image.

0321553845_text_press_pr1.indb 292 11/18/08 10:59:00 AM

DYNAMICALLY CHANGING IMAGES’ SCREEN AREA 293

Now whatever portion of the image would overfl ow out of the div is hidden
from view (Figure 9.7).

Once again, though, it would be better for this image to be cropped from
the left side, not the right. We can’t use the background-position property
this time because it’s not a background image. To change how a foreground
image is anchored within its parent, you can fl oat the image:

div#foreground img {

 float: right;

}

This anchors the image to the right side of the div, so more or less of its left
side shows as the div changes in size. Using a foreground image results in an
effect that looks exactly like using a background image (seen in Figure 9.5),
but the foreground image has alternative text, and you could also easily add
a link to it.

Creating Sliding Composite Images

Perhaps you don’t want either end of your image dynamically cropped off—
there may be important content on each side that you want to always keep
in view. You could scale the entire image instead, which would keep the
entire width of the image always visible, but it would also change the verti-
cal space the image takes up, and perhaps you don’t want this either. This is
the perfect time to try using what I call a composite image.

Creating what appears to be a single image out of multiple pieces that slide
over and away from each other takes a little more work on the graphics side

FIGURE 9.7
With overflow
set to hidden, the
extra portion of the
image is now hid-
den from view.

� NOTE: The page show-
ing this completed tech-
nique is crop_foreground.
html in the ch9_examples.
zip file. You can also view
both background and fore-
ground techniques together
on the page crop.html.

0321553845_text_press_pr1.indb 293 11/18/08 10:59:00 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES294

than the variable width image techniques we’ve gone over so far. The real-
web-site example of this composite image technique shown in Figures 2.23
and 2.24 used two images to create the effect; you can use an unlimited
number of images, but we’ll keep it simple and use two for our own alien-
invasion example as well.

One image is going to be at least partially overlapping the other, so at least
the topmost image needs to have a transparent background. (You may
choose to make the lower image transparent too, to allow parts of the main
page background to show through, for instance.) You can use either a GIF
with index transparency or a PNG with alpha transparency. PNGs are more
versatile, since they can lay over any other color or pattern without the
skinny colored edge that shows around GIF images when they’re placed over
something that’s a different color than they were optimized for. PNGs can
also have variable degrees of transparency, instead of each pixel being either
100 percent transparent or 100 percent opaque.

We’ll use an alpha-transparent PNG for our top image in this example.
Figure 9.8 shows our fl ying saucer image in Adobe Fireworks; the checker-
board background indicates the transparent areas of the image. Figure 9.9
shows the image that the fl ying saucer will be laid on top of—a photo of the
Chicago skyline—which can be saved as an ordinary JPG.

FIGURE 9.9 The skyline image is completely separate from the flying saucer image.

Once you have your images made, you need two block elements to place
each on as a background image. One block element needs to be nested inside
the other. In a real page, you’d want to make use of block elements that were
already in place as much as possible, such as existing wrapper and header
divs. For this simple example, we’ll use two empty divs:

<div id=”outer”><div id=”inner”></div></div>

Next, you need to create rules placing each image as a non-repeating back-
ground on each div, with the image you want on the bottom used for the
background of the outer div:

FIGURE 9.8 The flying
saucer image has large areas
of partial or total transpar-
ency through which the
skyline image will be visible.

0321553845_text_press_pr1.indb 294 11/18/08 10:59:01 AM

DYNAMICALLY CHANGING IMAGES’ SCREEN AREA 295

#outer {

 background: url(skyline.jpg) no-repeat;

}

#inner {

 background: url(ufo.png) no-repeat;

}

Since the divs are empty, they also need dimensions added to them to stop
them from collapsing entirely, as well as to create the fl exible behavior that
we want:

#outer {

 width: 100%;

 max-width: 1000px;

 height: 300px;

 background: url(skyline.jpg) no-repeat;

}

#inner {

 width: 100px;

 height: 250px;

 background: url(ufo.png) no-repeat;

}

Both of the images now show on the page, with the fl ying saucer layered
over the skyline (Figure 9.10). However, the fl ying saucer never moves when
the window changes in size—it’s always pinned to the top left corner of the
skyline photo. That’s because the div for which it’s a background begins in
that corner, and non-repeating, non-positioned background images display
in the top left corner by default.

� NOTE: Remember that
IE 6 and earlier do not
support alpha-transparent
PNGs, so the flying saucer
image will have a solid
gray background in those
browsers. Use the
alphaimageloader
hack described in the
exercise section of
Chapter 7 to fix this.

FIGURE 9.10 The fly-
ing saucer image is layered
over the skyline image to
create the appearance of
a single image, but the
flying saucer isn’t yet in
the place we want it.

0321553845_text_press_pr1.indb 295 11/18/08 10:59:01 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES296

There are a couple ways to fi x this: use the background-position property to
change where the fl ying saucer displays within the div, or move the entire
div. Either option is fi ne, but the latter seems a little easier to understand
and implement—at least to me—so that’s what we’ll use here.

We’ll move the div using absolute positioning; fl oating would work as well.
First, add position: relative; to the #outer rule to make that div act as
the containing element for the absolutely positioned inner div. Then, add
position: absolute; as well as top and right values to the #inner rule:

#inner {

 position: absolute;

 top: 50px;

 right: 50px;

 width: 100px;

 height: 250px;

 background: url(ufo.png) no-repeat;

}

Now the fl ying saucer image will always be 50 pixels away from both the
top and right edges of the skyline photo. Because the outer div has a fl exible
width, its right edge moves as the window is resized, which in turn makes
the fl ying saucer image move as well (Figure 9.11).

Creating Flexible Collections of Images
You now know several ways to make individual images fl exible to either
their parent’s dimensions or text size, but what about when you need a
whole group of images to be fl exible as a whole? Let’s go over how to make

� NOTE: The page show-
ing this completed tech-
nique is composite.html in
the ch9_examples.zip file.

FIGURE 9.11 The flying
saucer image now appears
to move as the browser
window changes in size.

0321553845_text_press_pr1.indb 296 11/18/08 10:59:02 AM

CREATING FLEXIBLE COLLECTIONS OF IMAGES 297

two of the most common types of image collections—teaser thumbnail lists
and image galleries—fl exible too.

Teaser Thumbnail Lists

A teaser thumbnail list is my own personal name for the design convention
of a list where each item is made up of a title, short description, and thumb-
nail image. Figure 2.22 is one example of a teaser thumbnail list, as is the list
of featured pets on the home page of our fi ctional Beechwood Animal Shelter
site (Figure 2.43). These types of lists can be built in many different ways,
but many techniques result in lists that are not fl exible or not as accessible
to the end user as they could be.

Figure 9.12 shows the teaser thumbnail list I’ll be using as an example
throughout this section. I’ve chosen the following HTML as the most seman-
tic way of marking up each of the elements of this design component:

<h1>Seafood of the Month Club 2008</h1>

 <h2>January</h2>

 <p>Seared sea scallops, served with mushy peas.</p>

 <h2>February</h2>

FIGURE 9.12 Each teaser
thumbnail list item is made
up of a title, short descrip-
tion, and thumbnail image.

0321553845_text_press_pr1.indb 297 11/18/08 10:59:03 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES298

 <p>Soy-glazed salmon, served with coconut and bell pepper

broccoli slaw.</p>

 <h2>March</h2>

 <p>Tuna steak with ginger-shitake cream sauce, served with

sesame broccoli and brown rice.</p>

You’ll note that the img elements follow the h2 heading elements, even though
Figure 9.12 shows the images appearing on the same line as the headings.
You’ll need to fi nd a way to get the images to move up to sit beside the head-
ings, even though they come later in the source. Luckily, you’re already an
expert at doing just that—you have several negative margin layouts you can
use to achieve such an effect. A teaser thumbnail list is essentially nothing
more than a two-column layout. This particular one has a fi xed-width left
“sidebar” and a liquid right “main content area,” so any negative margin tech-
nique that works for two-column, hybrid liquid-fi xed layouts will work here.

To turn this into a negative margin “layout,” the basic steps are:

Create an empty space on the left side of the list.1.

Use negative margins to pull each image into that space.2.

Float all the elements within each list item so they can sit side by side.3.

We’ll create the empty space on the left side of the list using a left margin on
the ul element that is equal to the width of the images (100 pixels) plus the
width of the gap we want between each image and its accompanying text
(15 pixels):

ul {

 margin: 0 0 0 115px;

 padding: 0;

 list-style: none;

}

This rule also gets rid of some of the default list styling, including the bul-
lets. The rest of the default list styling that needs to be overridden is on the
list items:

li {

0321553845_text_press_pr1.indb 298 11/18/08 10:59:03 AM

CREATING FLEXIBLE COLLECTIONS OF IMAGES 299

 margin: 0 0 20px 0;

 padding: 0;

}

This removes the default left margin and padding that some browsers add to
li elements, as well as adds 20 pixels of space below each list item to space
them out from each other.

EASIER TEASER THUMBNAIL L IST CREATION OPTIONS

If you’re still feeling a little uneasy about creating negative margin layouts,
there are a few easier ways to create teaser thumbnail lists that achieve the
same visual effect:

Remove the images from the (X)HTML altogether and simply use CSS back- �
ground images to place the thumbnails next to each heading-paragraph
pair. This is a perfectly acceptable option—if the thumbnails are purely dec-
oration. If you want the images to show even when the user has CSS off
or unavailable, as well as when the user prints the page, you should keep
them in the (X)HTML. Doing so also allows you to add alternative text and
links to the images—not important if they’re just decoration, but essential if
they’re content.

You can keep the images in the (X)HTML and still avoid a negative margin �
technique by placing the image before the heading within each list item.
This markup isn’t quite as ideal as placing the headings fi rst—after all, the
headings should head or precede the images and text they describe. But the
markup is still quite clean and fairly semantic, and it does allow you to use
a simple fl oats-with-matching-side-margins technique: just fl oat the images
to the left, and give the headings and paragraphs left margin values that
exceed the images’ width.

Another way to keep the images in the (X)HTML but use the most semantic �
markup of headings-fi rst is to use the same unit of measurement for both
the thumbnails and the blocks of text beside them. The example we’re
going over here is essentially a hybrid layout: the thumbnails are fi xed-
width and the text beside them is liquid. This is the most common type of
teaser thumbnail list. But you could make the thumbnails scalable instead.
This would allow you to use a simple fl oat-all-the-columns layout method:
fl oat the images to the left and the headings and paragraphs to the right,
all with matching units of measurement. You’ll get to try this method in the
exercise section at the end of the chapter.

0321553845_text_press_pr1.indb 299 11/18/08 10:59:03 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES300

You can now pull the image into the empty space on the left:

img {

 float: left;

 margin-left: -115px;

}

This positions the images correctly horizontally, but not vertically (Figure
9.14). To get them to move up and sit beside the headings, the headings have
to be fl oated, as do the paragraphs:

h2 {

 float: right;

 width: 100%;

 margin: 0;

}

p {

 float: right;

FIGURE 9.13 A large
empty space on the left side
of the list stands ready to
receive the thumbnails.

0321553845_text_press_pr1.indb 300 11/18/08 10:59:03 AM

CREATING FLEXIBLE COLLECTIONS OF IMAGES 301

 width: 100%;

 margin: 0;

}

The width: 100%; declarations ensure that each piece of text fi lls up the
entire width to the right of the images, instead of each element shrinkwrap-
ping to its content, as fl oats without declared widths do naturally.

The images have now moved up to sit beside the headings, but they overlap each
other (Figure 9.15). This is because the list items contain only fl oated content
now, which is out of the fl ow, and have thus collapsed down to zero height.

FIGURE 9.14 Negative left
margins pull the images to the
left, but don’t pull them up
to sit beside the headings.

FIGURE 9.15 Floating the text ele-
ments to the right allows the images
to sit beside the headings, but the list
items will not expand to hold the full
height of the thumbnails when every-
thing inside the list items is floated.

0321553845_text_press_pr1.indb 301 11/18/08 10:59:04 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES302

To address this, we need to use a fl oat containment method to get each list
item to encompass all of the fl oated elements within it. Floating the li ele-
ments themselves is one easy way to do this:

li {

 float: left;

 width: 100%;

 margin: 0 0 20px 0;

 padding: 0;

}

The list items are now properly spaced out from each other, whether the text
within them is shorter or longer than the thumbnail images (Figure 9.16).

The only problem is that fl oating the list items made the images disappear in IE
6 and earlier. To fi x this, add position: relative; to both the li and img rules:

li {

 float: left;

 width: 100%;

 margin: 0 0 20px 0;

 padding: 0;

 position: relative;

}

img {

 float: left;

 margin-left: -115px;

 position: relative;

}

Thumbnail Image Galleries

Although images are usually fi xed in width, you can line them up side by
side and still create a block of image thumbnails that can change in total
width. You saw an example of this in Figure 2.41, where the thumbnails
wrapped onto a variable number of lines to accommodate the liquid width
of the content area. Another way to create a fl exible image gallery is to make
all of the thumbnails scale, using one of the scalable image techniques you
learned at the start of the chapter. Let’s go over both options.

� NOTE: The page
showing this completed
technique is teaser.html in
the ch9_examples.zip file.

FIGURE 9.16 No matter
which is longer—thumbnail
or accompanying text—the
list items remain spaced
out from each other.

0321553845_text_press_pr1.indb 302 11/18/08 10:59:05 AM

CREATING FLEXIBLE COLLECTIONS OF IMAGES 303

WRAPPING THE THUMBNAILS

The two behaviors you want thumbnails in a fl exible image gallery to
achieve—sitting side by side and wrapping onto more lines as needed—are
both native behaviors of fl oats. So, the only thing you need to do to make
thumbnails wrap is to fl oat each one in the same direction.

You could just place the images straight into the (X)HTML with no container,
and fl oat each of the img elements. But a more semantic way to mark up a
group of images is to use an unordered list, which offers you more styling
possibilities as well. Put each img into an li element:

Next, remove the default list styling:

ul {

 margin: 0;

 padding: 0;

 list-style: none;

}

li {

 margin: 0;

 padding: 0;

}

0321553845_text_press_pr1.indb 303 11/18/08 10:59:05 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES304

Now, simply fl oat the li elements all to the left, and give them some margin
on their right and bottom sides to space them out from each other:

li {

 float: left;

 margin: 0 10px 10px 0;

 padding: 0;

}

That’s all you need to do to create a basic, wrapping thumbnail image gal-
lery (Figure 9.17). The perfect number of thumbnails always sits on each
line, no matter the viewport width, so you don’t get a horizontal scrollbar or
a really large gap on the right. If you didn’t want the gallery to take up the
entire width of its parent, simply assign a width to the ul element; as long
as the width is a percentage or em value, the list will still be fl exible and the
thumbnails will still wrap.

You may have noticed that all of the thumbnails in this example share the
same dimensions. Variable widths on thumbnails are not a problem, but
variable heights make this wrapping thumbnail technique fail. Figure 9.18
shows the same page with the height of some of the thumbnails increased.
When the thumbnails wrap, they move as far over to the left as they can go.
But when one of the thumbnails in the previous row hangs down farther
than the rest, it impedes the new row of thumbnails from moving any fur-
ther to the left, and big gaps can be left in the rows.

� NOTE: The page
showing this completed
technique is gallery_
wrap.html in the
ch9_examples.zip file.

FIGURE 9.17 The num-
ber of thumbnails on each
line adjusts to the space
available in the viewport.

0321553845_text_press_pr1.indb 304 11/18/08 10:59:06 AM

CREATING FLEXIBLE COLLECTIONS OF IMAGES 305

There are a couple ways you can modify the basic technique to work with
variable height thumbnails. The simplest is to assign a fi xed height to the
li elements that matches the height of the tallest thumbnail. This makes
all the li elements match in height, instead of depending on the size of the
images inside them to dictate their heights, so there are no taller list items
sticking down any more that might block the wrapping thumbnails.

If you can’t assign a fi xed height to the li elements, though, perhaps
because your thumbnails are pulled into the page dynamically and you don’t
know what the largest height will be, there’s still hope. You’ll need to use
something other than fl oats to get the thumbnails sitting side by side—and
that something is display: inline-block.

An inline block mixes the attributes of block and inline elements. It’s placed
on the same line as adjacent content, like inline elements are, but you can
assign it width, height, margin, and padding, just like a block element.

Since inline block elements sit side by side by default, when you apply a
display value of inline-block to the li elements, you can get rid of the
float declaration:

li {

 display: inline-block;

 margin: 0 10px 10px 0;

 padding: 0;

}

FIGURE 9.18 The extra height on the
second thumbnail blocks the fifth thumb-
nail from moving all the way to the left,
leaving a gap in the second row. The
same problem happens in the third row.

0321553845_text_press_pr1.indb 305 11/18/08 10:59:06 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES306

In browsers that support inline-block, that’s all you need to do to keep the
thumbnails from hanging up on each other when they wrap (Figure 9.19). If
you want the thumbnails aligned along their top edges, as they were when
we used fl oats, simply add vertical-align: top; to the li rule.

In browsers that don’t support inline-block, the thumbnails will just dis-
play straight down, each on its own line. These browsers include versions
of IE earlier than 8 and versions of Firefox earlier than 3. Let’s take care of
the IE problem fi rst.

IE 7 and 6 support inline-block only on elements that are inline by default,
so you can trick these browsers into making inline-block work by setting
the list items to display: inline. Hide this rule inside a conditional com-
ment that only IE 7 and earlier can read:

<!--[if lte IE 7]>

<style type=”text/css”>

li {

 display: inline;

}

</style>

<![endif]-->

This fi xes the problem in IE; now onto Firefox.

Versions of Firefox prior to 3 lacked support for inline-block but had their
own proprietary values, -moz-inline-box and -moz-inline-stack, for the

� NOTE: Browser-
proprietary values will
make your CSS fail valida-
tion checks. But they don’t
hurt any browsers that
can’t understand them,
so don’t worry about
the lack of validation—
validation is just a means
to an end, not necessar-
ily an end unto itself.

FIGURE 9.19 When the
thumbnails are turned
into inline blocks, instead
of floats, they no longer
hang up on one another.

0321553845_text_press_pr1.indb 306 11/18/08 10:59:08 AM

CREATING FLEXIBLE COLLECTIONS OF IMAGES 307

display property that worked almost identically. Add either of these values
to the li rule:

li {

 display: -moz-inline-box;

 display: inline-block;

 margin: 0 10px 10px 0;

 padding: 0;

 vertical-align: top;

}

This fi xes the problem in Firefox 2 without hurting any other browsers,
including Firefox 3—they all just ignore the -moz-inline-box value. If you
have links wrapped around the images, however, you’ll have just a bit more
work to do. Firefox 2 will position the images incorrectly and not make the
entire image clickable when you nest a elements inside the li elements. To
fi x this, turn the a elements into blocks:

li a {

 display: block;

}

Again, this doesn’t hurt other browsers.

SCALING THE THUMBNAILS

If you want the thumbnails in your image gallery to scale instead of—or
in addition to—wrapping, you need to add the scalable foreground image
technique (that we went over earlier in the chapter) to the basic wrapping
thumbnail gallery CSS.

The fi rst step in making scalable foreground images, you may remember, is to
remove the width and height dimensions from the img elements in the (X)HTML:

� TIP: Add the propri-
etary value before the
proper value, as done here,
so that the browser will
use the latter one when
it’s able to support it.

� NOTE: The page
showing this completed
technique is gallery_
wrap_irregular.html in the
ch9_examples.zip file.

0321553845_text_press_pr1.indb 307 11/18/08 10:59:08 AM

CHAPTER 9: CREATING FLEXIBLE IMAGES308

Next, add a percentage or em width onto the li elements:

li {

 float: left;

 width: 18%;

 margin: 0 10px 10px 0;

 padding: 0;

}

Finally, add a rule for the img elements that sets their widths to 100 percent
so they always fi ll up the variable size of their parent list items:

img {

 width: 100%;

}

The thumbnails now scale with the browser window (Figure 9.20).

If you want to avoid the blurriness or pixelation that happens when browsers
scale images past their native dimensions, you can add a maximum width
onto the images that matches their pixel widths:

img {

 width: 100%;

 max-width: 100px;

}

When the thumbnails reach this max-width value, they will stop scaling. The
list items, however, will not, so the images will appear to move farther apart
from each other, still fi lling up the available space (Figure 9.21).

� NOTE: The page
showing this completed
technique is gallery_
scale.html in the
ch9_examples.zip file.

FIGURE 9.20 The thumb-
nails still wrap to a small
degree, but now their primary
method of adjusting to the
viewport is to scale with it.

0321553845_text_press_pr1.indb 308 11/18/08 10:59:08 AM

SITE-BUILDING EXERCISE: ADDING FLEXIBLE IMAGES TO THE HOME PAGE 309

FIGURE 9.21 Once the
thumbnails reach their maxi-
mum widths, they will stop
scaling, but will still adjust to
the viewport size by moving
farther apart to fill the space.

0321553845_text_press_pr1.indb 309 11/18/08 10:59:09 AM

